

Food Chemistry 65 (1999) 453-460

Food Chemistry

Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey

Ertuğrul Sesli^{a,*}, Mustafa Tüzen^b

^aDepartment of Science Education, Karadeniz Technical University, Söğütlü, Trabzon, Turkey ^bDepartment of Chemistry, Gaziosmanpasa University, Tokat, Turkey

Received 30 June 1998; received in revised form 31 July 1998; accepted 31 July 1998

Abstract

Contents of Hg, Pb, Cd, Fe, Cu, Mn, Zn, Co and As have been determined spectrometrically in fruiting bodies of 109 wild and two cultivated macrofungi specimens. The specimens of macrofungi were collected from the East Black Sea region in Turkey. The habitat, edibility and the distributions of the taxa to the families are listed © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Macrofungi are among the most mysterious life forms. The ancient Greeks believed they came from Zeus's lightning because they appeared after rains and reproduced and grew inexplicably. In the New World, some hallucinogenic mushrooms have been called "the food of the gods" and invested with supernatural powers. They had, in fact, been out of sight, growing underground or beneath bark. Some species contain dangerous toxins, many of which are not yet fully understood. Some mushrooms are of course edible. Since Roman times, fungi have been famous as gourmet fare (Lincoff, 1988).

Numerous investigations have dealt with the heavy metal contents of macrofungi. The elemental contents of the seven selected species of edible mushrooms, have been determined by the method of Instrumental Neutron Activation Analysis (INAA) (Latiff, Daran, & Mohamed, 1996).

Trace element concentrations in fungi are considerably higher than those in agricultural crop plants, vegetables and fruit. This would suggest that fungi possess a very effective mechanism that enables them to take up some trace elements from the substrate more readily. This mechanism may be more effective in the parasitic and saprophytic fungi trophic groups than in the mycorrhizal fungi group (Lepsová, & Mejstrik, 1988). The uptake of metals in fungi is in many respects different from that of plants. Most macrofungi contain significantly more zinc and copper than green plants and the strong accumulation of mercury and cadmium in certain species are examples of these differences (Kojo, & Lodenius, 1989).

The highest concentration of zinc was found in *Amanita rubescens* Pers.: Fr. and in *Lycoperdaceae* Progn. (Zachara, Borowska, Koper, & Wasowicz, 1986).

Studies show that the concentrations of trace elements in the fruiting bodies of fungi tend to be speciesspecific. The concentrations were found to depend on the physiology of the species and particularly on its trophic pattern (Lepsová, & Mejstrik, 1988).

There were significant differences for both cadmium and mercury and no correlation between the metal contents and size (dry weight) of the fruiting body could be detected (Kojo, & Lodenius, 1989).

The concentrations of four heavy metals in 149 samples of mushroom fruiting bodies, representing 11 species, mainly all edible were determined by atomic absorption spectroscopy (Kalač, Burda, & Staskova, 1991).

The arsenic and cadmium contents of 88 samples of mushrooms were determined by Vetter. The data offer new information about the concentration of two toxic elements of particular mushroom species. These data are of great importance in the contexts of toxicology, food chemistry and, partly, environmental protection (Vetter, 1994).

The arsenic content of 225 samples representing 79 species of edible mushrooms were determined by

^{*} Corresponding author.

hydride generation atomic absorption spectrophotometry (Stijve, & Bourqui, 1991).

117 samples of fungi were analysed for their lead, cadmium and mercury contents (Lilja, Kuusi, Laasksovirta, Lodenius, & Piepponen, 1983).

Contents of Cd, Cu, Pb and Zn have been determined in wild growing mushrooms in polluted and unpolluted regions (Gast, Jansen, Bierling, & Haanstra, 1988).

The selenium contents of edible mushroom in Finland were assayed, after a modified wet and dry ashing, by atomic-absorption spectrophotometry, using the hydride technique (Piepponen, Lilja, & Kuusi, 1983).

For various wildlife mushrooms from the geological districts of eastern Croatia, and Slovania, contents of aluminium, lead and cadmium were determined (Mandic, Grgic, Grgic, & Seruga, 1992).

Turkey is located in southeastern Europe and Asia. It is bordered on the north by the Black Sea, on the south by Iraq, Syria, and the Mediterranean, on the west by the Aegean Sea, on the northeast by Georgia and Armenia, on the northeast by Bulgaria and Greece.

Turkey can be separated into seven geographic regions. One of them is the Black Sea region. The Black Sea region can be separated into three smaller geographic regions. The East Black Sea region (Fig. 1) is one of them. In this region, the climate is mild and rainy. The seasons are normally wet with mild temperatures. The climate during the year, especially, in spring and autumn, is ideal for fungal growth.

The Black Sea region for which specimens were collected by the author, has a rich macrofungal flora (Sesli, & Baydar, 1996; Sesli, 1997, 1998).

The purpose of the present study was the determination of Pb, Cd, Hg, Fe, Cu, Mn, Zn, Co and As contents, by using an AAS method, in the fruiting bodies of macrofungi specimens collected from the East Black Sea region of Turkey. Hg concentrations in the macrofungi specimens were determined by CVAAS. As contents in the samples were determined by linear hydride generation AAS. The heavy metals were determined in the flame medium.

2. Materials and methods

The macrofungi specimens were collected from locations in the East Black Sea region of Turkey in 1997. In addition to these wild growing mushrooms, samples [samples for *Agaricus bisporus* (Lange) Imbach and *Pleurotus ostreatus* (Jacq.: Fr.) Kumm] were also taken from commercial mushroom farms.

In all, a total of 444 samples were analysed, representing 111 different macrofungi species.

For the identification of specimens, the colour, odour and other apparent properties of the macrofungi and vegetation were noted. Photographs were taken using Fuji colour negative film and a macro objective of normal focal length with an extension tube. A spore print was made to determine the colour of the spores and the spores were then used to determine the measurements. Microscopic examinations were performed using Nikon research microscopes. Excised pieces of fungus caps were moistened by the addition of a few drops of Clemencon's solution and were placed in a damp chamber to soften completely. The sections were made with a previously unused razor blade under a binocular loupe on white paper. The macrofungi were identified using the reference books of European Flora (Breitenbach, & Kränzlin, 1984, 1986, 1991).

Collected mushrooms were cleaned, cut into slices and the samples were washed with demineralized water. Each sample was dried at 50°C overnight and crushed in a mortar and pestle. Digestion of mushroom samples was performed using an oxi–acidic mixture of HNO₃: H₂SO₄: H₂O₂ (4:1:1) (12 ml for 2–4 g sample) and heating at 75°C for 3 h. After cooling, 20 ml demineralized water was added, the digest was again heated up to 150°C for 4 h and brought to a volume of 25 ml with demineralized water.

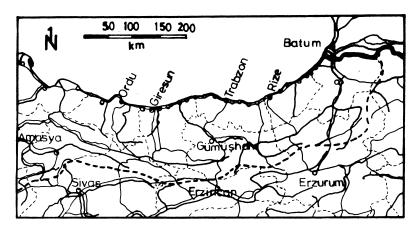


Fig. 1. Collection sites of specimens.

Table 1

Habitat, edibility and the families of macrofungi species

lo Cl	ass, family and species of macrofungi	Habitat	Edibility
	CETES De Bary lariaceae Hill		
)1 Hy	oglossaceae Corda	On dead branches of trees	Not edible
)2 Spa	athularia flavida Pers.: Fr. lotiaceae Dennis	In coniferous forests on needle-covered ground	Edible
	<i>lgaria inguinans</i> (Pers.: Fr.) Fr. <i>lvellaceae</i> Dum.	On dead wood of deciduous trees	Not edible
	lvella acetabulum (L: Fr.) Quél.	Amongst leaf litter in woods	Poisonous
	<i>lvella</i> sp. zizaceae Fr.	On the ground	
	ziza sp.	On manure and rich soil	
	<i>YCETES</i> Classe		
	emellaceae Fr. bacina incrustans (Pers.: Fr) Tul.	In crusting grass, twigs and other organic debris	Not edible
	crymycetaceae Bref.		
	locera viscosa (Pers.: Fr.) Fr. athraceae Chev.	On conifer stumps and roots	Not edible
Ph	<i>athrus ruber</i> Pers.: Pers. <i>allaceae</i> Corda	On soil in hardwood forests and park grounds	Not edible
Nie	allus impudicus L.: Pers. dulariaceae Fr.	Buried in the soil, in gardens and woodland	Edible
	<i>athus</i> sp. <i>astraceae</i> Corda	On soil and organic debris	
	<i>astrum fimbriatum</i> Fr.: Fr. <i>coperdaceae</i> Brogn.	On rich humus under deciduous trees	Not edible
	coperdon perlatum Pers.: Pers.	Woodland	Edible
	coperdon saccatum Vahl.	On waste ground	Edible
	<i>coperdon</i> sp. <i>lvatia utriformis</i> (Bull.: Pers.) Jaap	On sandy soil In pastures on sandy soil	Edible
7 Ca	lvatia uniformis (Butt., Fers.) Jaap Ivatia sp. Ierodermataceae Corda	On heaths	Edible
	leroderma aurantium Pers.	In rich woodland on sandy soil	Not edible
	leroderma sp. lostomataceae E. Fish	Amongst sparse grass	
	lostoma brumale Pers.: Pers ntharellaceae Schroet.	In sandy calcareous soil	Not edible
1 <i>Ca</i>	ntharellus cibarius (Fr.: Fr.) Fr.	In all kinds of woodland	Edible
	ntharellus subalbidus A.H.S. & Morse	On the ground	Choice
	ntharellus tubaeformis (Bull.: Fr.)	On acid soils in woods	Edible
	ntharellus sp. aterellus cornucopioides (L.Fr.) Pers.	On sphagnum moss in bogs Amongst the leaf litter of deciduous woods	Edible(Good)
	eudocraterellus sinuosus (Fr.) Reid	Amongst the leaf litter of deciduous woods	Edible(Good)
	mphaceae Donk.	. mongst the fear fitter of doliduous woods	Laisie(Good)
7 <i>Go</i>	<i>mphus clavatus</i> (Pers.: Fr.) S.F. Gray <i>avariaceae</i> Chev.	On the ground under conifers	Choice
	maria flava (Sch.: Fr.) Quel.	On the ground in mixed woods	Edible
Hy	<i>maria</i> sp. <i>dnaceae</i> Chev.	On the ground near conifers	
	ednum repandum L.: Fr. elephoraceae Chew.	Deciduous or coniferous woods	Edible (Excellent)
	elephora palmata (Scop.: Fr.) Fr. nkeraceae Donk	On the ground near conifers	Not edible
	rcoden imbricatus (L.: Fr.) P. Karst.	Coniferous woods	Edible
	ednellum concrescens (Pers.: Schw) Bank.	Coniferous and deciduous woods	Unknown
	dnellum peckii Bank. In Peck	Coniferous woods	Not edible
	ellodon sp.	Coniferous and mixed woodland	
	menochaetaceae Donk motus hispidus (Bull.: Fr.) P. Karst.	On ash	Not edible
	lvporaceae Corda	011 8511	THUE CUIDLE
	rrena unicolor (Bull.: Fr.) Murr.	On wood	Not edible

 $Table \ 1 - (\textit{continued})$

No	Class, family and species of macrofungi	Habitat	Edibility
)38	Meripilus giganteus (Pers.: Fr.) P. Karst.	On deciduous trees	Not edible
39	Polyporus squamosus (Huds.: Fr.) Fr.	Parasitic on deciduous trees	Edible
40	Polyporus sulphureus Bull.: Fr. Coriolaceae Sign.	On deciduous trees	Edible
41	Daedalea guercina (L.: Fr.) Pers.	On dead deciduous wood	Not edible
12	Trametes gibbosa (Pers.: Fr.) Fr.	On dead deciduous trees	Not edible
	Bjerkanderaceae Julich		
43	<i>Tyromyces stipticus</i> (Pers.: Fr.) Kotl. & Pouz. <i>Schizophyllaceae</i> Quel.	On dead conifers	Not edible
14	Schizophyllum commune L.: Fr. Boletaceae Chew.	On dead wood of deciduous trees	Not edible
15	Boletus edulis Bull.: Fr.	Coniferous, broad-leafed or mixed woodland.	Edible (Excellent)
6	Boletus erythropus Pers.	In coniferous, broad-leafed and mixed woodland	Edible
7	Boletus sp.	In mixed woodland	
8	Leccinum carpini (Schulz.) Moser.	With hazel or oak	Edible
	Reid		
19	Suillus granulatus (L.: Fr.) Rousse Paxillaceae Lotsy	With conifers	Edible
50	Paxillus atrotomentosus (Batsch: Fr.) Fr. Hygrophoraceae Lotsy	On stumps of conifers	Not edible
51	Cuphophyllus virgineus (Wulf.: Fr.) Bon	Amongst short grass in pasture and open woodland	Edible (Good)
52	<i>Hygrocybe sciophana</i> (Fr.: Fr.) Wün.	In grassland	Edible
53 : 4	Hygrocybe sp.	In short grass	Edibl-
i4	Hygrophorus chrysodon (Batsc: Fr.) Fr. Hygrophorus glionychy Fr.	In mixed deciduous wood	Edible
5	Hygrophorus gliocyclus Fr.	Among needle litter near conifers In hardwood forests	Edible
6 7	Hygrophorus russula (Sch.: Fr.) Quel. Hygrophorus unicolor Gröger Tricholomataceae Roze	In hardwood forests In beech forests	Edible (Good) Edible
8	Armillaria mellea (Vahl: Fr.) Kumm	On trunks or stumps of trees	Edible
9	Laccaria amethystina (Bolt.) Murr.	Coniferous or deciduous woods	Edible
0	Laccaria laccata (Scop.: Fr.) Bk. & Br.	In woods or heaths	Edible
1	Lepista inversa (Scop.) Pat.	In leaf litter in woods	Edible
52	<i>Lepista</i> sp.		-
53	Tricholoma terreum (Sch.: Fr.) Kumm.	In woods	Edible
4	Tricholomopsis rutilans (Sch.: Fr.) Sing.	On conifer stumps	Edible
5	Clitocybe houghtonii (Bk. & Br.) Dennis	In beech litter	Unknown
6	Clitocybe sp	In grassland	
-	Marasmiaceae Kühn.		E 111 1
7	Marasmius oreades (Bolt.: Fr.) Fr.	In short grass of pasture	Edible
8	Marasmius sp.	In lawns In deciduous woods	Edible
i9 10	Collybia dryophila (Bull.: Fr.) Kum Oudemansiella mucida (Schrad.: Fr.) Höhn.		Edible Edible
70 71	Oudemansiella mucida (Schrad.: Fr.) Honn. Oudemansiella radicata (Relh.: Fr.) Sing.	On the trunks of beech Near deciduous trees	Edible
1	Pleurotaceae K. & R.: Kühn.		Luidie
2	Panellus stipticus (Bull.: Fr.) P. Karst.	On dead branches or stumps	Not edible
73	Pleurotus ostreatus (Jacq.: Fr.) Kumm	Culture	Edible
	Coprinaceae Gaüm.		
4	Coprinus comatus (Müll.: Fr.) Pers.	In grass by roadsides	Edible (Good)
5	Coprinus micaceus (Bull.: Fr.) Fr.	On or around broad leafed stumps	Edible
6	Coprinus sp.	In grass	
_	Strophariaceae Sing. & Smith		
7	Kuehneromyces mutabilis (Scop.: Fr.) Sing. & Smith	On stumps or trunks of deciduous trees	Edible(Good)
8	Hypholoma capnoides (Fr.: Fr.) Kumm.	Conifer stumps	Edible
9	Hypholoma fasciculare (Huds.: Fr.) Kumm.	On stumps of trees	Not edible
0	Hypholoma sublateritium (Fr.) Quel. Hypholoma sp.	Stumps of deciduous trees On trunks	Not edible
31	Hypholoma sp. Cortinariaceae Roze		
32	Cortinarius auroturbinatus (Secr.) Lange	Beech woods on chalk	Unknown
3	Cortinarius bulliardii (Pers.: Fr.) Fr.	Deciduous wood.	Unknown
34	Cortinarius subbalastinus Hry.: Hry.	With birch	Unknown
5	Cortinarius subturbinatus Hry.: Or.	Under beech	Unknown
	Cortinarius sp	Under beech	

Table 1—(continued)

No	Class, family and species of macrofungi	Habitat	Edibility
087	Hebeloma sinapizans (Paul.: Fr.) Gill. Agaricaceae Fr.	In deciduous and mixed woods	Poisonous
088	Agaricus bisporus (Lange) Imbach	Culture	Edible
089	Agaricus campestris L.: Fr.	In pasture land	Edible (Excellent
090	Agaricus silvicola (Vitt.) Sacc.	In woods	Edible (Good)
091	Agaricus sp.	In woods	
)92	Cystoderma amianthinum (Scop.) Fayod	On heaths	Edible
093	Lepiota cristata (Bolt.: Fr.) Kumm.	In woods	Not edible
094	Macrolepiota gracilenta (Krombh.) Wasser Amanitaceae Roze	In woods	Edible
095	Amanita muscaria (L.: Fr.) Hook.	With birch trees	Poisonous
)96	Amanita rubescens Pers.: Fr.	In woodland	Edible
097	Amanita vaginata (Bull.: Fr.) Vitt.	In deciduous woods or on heaths	Edible
098	Amanita sp.	In woodland	
	Russulaceae Lotsy		
099	Lactarius acerrimus Britz	Under broad leafed trees	Unknown
100	Lactarius azonites (Bull.) Fr.	Under broad leafed trees	Not edible
101	Lactarius deliciosus (L.: Fr.) S.F. Gray	Under pines or spruce	Edible (Good)
102	Lactarius piperatus (Scop.: Fr.) S.F. Gray	Deciduous woods	Edible
103	Lactarius rufus (Scop.: Fr.) Fr.	Under pine	Not edible
104	Lactarius scrobiculatus Scop.: Fr.	Under conifers	Poisonous
105	Lactarius volemus (Fr.: Fr.) Fr.	Under trees	Edible(Good)
106	Lactarius sp.	Under conifers	
107	Russula cyanoxantha (Sch.) Fr.	Under broad leafed trees	Edible
108	Russula delica Fr.	Under trees	Edible
109	Russula foetens Pers.: Fr.	Under broad leafed trees or conifers	Not edible
110	Russula virescens (Sch.) Fr.	Under beech	Edible
111	Russula sp.	Under broad leafed trees	

For analysis of mercury, the technique described was as follows: One-half gram was taken from the dried homogenized sample and its digestion was carried out using 7 ml of a HNO_3 : H_2SO_4 : H_2O_2 acid mixture at a ratio of 4:1:1; digestion was carried out at 60°C in a thermostatic bath, being completed in about 1.5 h. For oxidation of the sample, a solution of potassium permanganate at 6%, w/v, was used. The excess of permanganate was reduced with a solution of hydroxylamine sulphate (Hatch, & Ott, 1968).

Hg levels in the samples were determined by cold vapour AAS. The determinations of Hg contents were carried out by Pye Unicam SP9 series AAS equipped with a cold vapour system and a Hg hollow cathode lamp, adjusted to 253.7 nm and fitted to the Pye Unicam mercury/hydride system, using 3%, w/v sodium borohydride in 1%, w/v NaOH as a reducing solution. The analysis was done following conditions: wavelength 253.7 nm; slit 0.7 nm; carrier gas (Purified N₂) pressure 2.5 kg/cm² and carrier gas flow rate 1100 ml/min. For determination of arsenic the linear hydride generation atomic absorption spectrometry (AAS) was used. Digestion of mushroom samples was carried out as for mercury analysis. The analysis was done following the conditions: wavelength: 193.7 nm; flame air/acetylene: carrier gas nitrogen. The lamp was allowed to stabilise for at least 1 h. The optical beam was adjusted through the quartz cell. By means of the peristaltic pump distilled water was aspirated into the hydride generator for 10 min, then $HNO_3:H_2SO_4:H_2O_2$ (4:1:1) and sodium borohydride solution. After about 5 min absorbency was zeroed. Similarly, standard solutions were aspirated and then tested at 2 min intervals. Each solution was measured three times with a signal integration time of 6 s.

The analyses of Pd, Cd, Fe, Cu, Mn, Zn and Co were performed using a Thermo Jarrel Ash–Smith Hieftje 1000 atomic absorption spectrophotometer (AAS) with an oxidising air acetylene flame and background correction of the deuterium lamp. The standard-addition procedure was used in all determinations.

The wavelength and slit values in nm used for the determination of Pd, Cd, Fe, Cu, Mn, Zn and Co were: 217.0 and 1.0; 228.8 and 0.5; 248.3 and 0.2; 324.7 and 0.5; 279.5 and 0.2; 213.9 and 0.5; 240.7 and 0.2, respectively (Table 1).

3. Results and discussion

The trace elements are of great biochemical interest and they have nutritional and clinical importance. Selenium and zinc play very important roles in human and animal metabolism, because they are constituents of various enzymes of clinical significance (Zachara, Borowska, Koper, & Wasowicz, 1986).

Table 2 Trace element contents of the examined macrofungi samples ($\mu g/g,\,dry$ weight)

Sample	Hg	Pb	Cd	Fe	Cu	Mn	Zn	Со	As
no									
001		1.43 ± 0.28	2.63 ± 0.45	88.5 ± 10.2	28.5 ± 2.3		34.3 ± 2.8	0.25 ± 0.07	1.27 ± 0.72
002		1.24 ± 0.32	1.73 ± 0.41	108 ± 10.7	24.1 ± 4.7	32.4 ± 1.7	52.1 ± 2.6	0.19 ± 0.10	1.33 ± 0.25
003		0.78 ± 0.17	1.21 ± 0.17	142 ± 20.6	37.4 ± 1.9	17.4 ± 1.5	41.4 ± 1.9	0.33 ± 0.13	1.08 ± 0.53
004	0.88 ± 0.20	0.97 ± 0.23		245 ± 28	75.3 ± 3.7	89.2 ± 3.7	107 ± 4.7	0.54 ± 0.24	0.76 ± 0.35
005	0.94 ± 0.17	1.27 ± 0.36	1.26 + 0.20	197 ± 16	64.1 ± 2.8	54.3 ± 2.4	162 ± 5.2	0.42 ± 0.17	0.88 ± 0.28
006 007	0.65 ± 0.10	$0.83 \pm 0.26 \\ 1.20 \pm 0.32$	1.26 ± 0.20 2.71 ± 0.52	$340 \pm 61 \\ 167 \pm 25.4$	75.4 ± 3.6 47.3 ± 5.4	64.5 ± 3.2	87.4 ± 3.4 18.2 ± 1.3	0.28 ± 0.12 0.42 ± 0.17	$0.75 \pm 0.34 \\ 1.62 \pm 0.85$
007		1.20 ± 0.32 1.19 ± 0.27	2.71 ± 0.32 1.54 ± 0.41	521 ± 69	47.3 ± 5.4 49.0 ± 5.5	33.2 ± 2.7	18.2 ± 1.3 63.5 ± 8.4	0.42 ± 0.17 0.24 ± 0.11	1.62 ± 0.83 1.64 ± 0.45
009		1.10 ± 0.27 1.10 ± 0.23	1.54 ± 0.41 1.50 ± 0.36	89.4 ± 6.7	49.0 ± 9.3 28.3 ± 2.3	24.2 ± 2.5	32.1 ± 4.4	0.24 ± 0.011 0.24 ± 0.05	0.94 ± 0.17
010		0.89 ± 0.25	2.66 ± 0.57	0, = 0,	32.5 ± 3.6	38.0 ± 3.5	39.5 ± 1.4	0.26 ± 0.06	0101 - 0117
011		0.88 ± 0.21	1.23 ± 0.15	136 ± 14	32.5 ± 3.8	19.5 ± 1.6	29.7 ± 3.5	0.17 ± 0.07	0.82 ± 0.25
012		0.78 ± 0.13		103 ± 24.5	23.4 ± 1.8		27.6 ± 2.8	0.18 ± 0.05	0.82 ± 0.37
013	0.28 ± 0.05	0.94 ± 0.25	1.36 ± 0.22	471 ± 68	127 ± 12	68.4 ± 5.7	116 ± 6.2	0.33 ± 0.11	
014	0.12 ± 0.03		0.76 ± 0.23	240 ± 17	63.4 ± 7.1	34.2 ± 2.7	24.3 ± 2.5		1.24 ± 0.33
015	0.16 ± 0.06	1.14 ± 0.32	1.54 ± 0.35	507 ± 49	133 ± 14	73.9 ± 4.5	128 ± 4.5	0.44 ± 0.21	
016	0.21 ± 0.05	1.04.0.00	0.82 ± 0.35	365 ± 47	82.5 ± 6.3	38.5 ± 1.8	26.7 ± 3.4		1.46 ± 0.40
017	0.63 ± 0.08	1.34 ± 0.23	1.63 ± 0.38	210 ± 24	52.0 ± 5.4	41.2 ± 2.9	34.2 ± 4.7	0.25 + 0.04	1.15 ± 0.17
018 019	1.65 ± 0.41 1.20 ± 0.50	1.94 ± 0.31	$\begin{array}{c} 1.83 \pm 0.63 \\ 2.10 \pm 0.72 \end{array}$		48.4 ± 4.2 52.6 ± 5.7	24.5 ± 2.2 21.2 ± 1.8	61.7 ± 3.6	$\begin{array}{c} 0.35 \pm 0.04 \\ 0.27 \pm 0.13 \end{array}$	
019	1.20 ± 0.30	$1.87 \pm 0.39 \\ 0.64 \pm 0.12$	2.10 ± 0.72 1.23 ± 0.33	419 ± 47	52.0 ± 5.7 67.3 ± 6.8	21.2 ± 1.8 30.6 ± 2.1	50.3 ± 2.8 42.4 ± 3.4	0.27 ± 0.13 0.34 ± 0.17	1.20 ± 0.36
020	1.21 ± 0.46	1.42 ± 0.26	1.23 ± 0.33 1.92 ± 0.32	765 ± 67	89.5 ± 5.4	50.0 ± 2.1 51.4 ± 3.4	62.7 ± 3.6	0.34 ± 0.17 0.31 ± 0.12	0.85 ± 0.20
022	1121 - 0110	0.83 ± 0.26	2.25 ± 0.42	510 ± 50	71.2 ± 8.0	47.1 ± 1.9	93.2 ± 5.2	0.22 ± 0.10	0.65 ± 0.14
023	1.01 ± 0.20	1.63 ± 0.44	2.05 ± 0.50	852 ± 47	125 ± 17	65.3 ± 2.7	82.5 ± 4.7	0.27 ± 0.07	0.72 ± 0.18
024		0.77 ± 0.21	1.83 ± 0.48	678 ± 42	93.8 ± 4.4	74.3 ± 4.4	49.1 ± 3.7	0.24 ± 0.14	0.93 ± 0.26
025	0.60 ± 0.15	1.28 ± 0.32	1.78 ± 0.52	105.4 ± 7.6	21.6 ± 1.7	32.5 ± 3.5	62.5 ± 3.5	0.14 ± 0.07	1.25 ± 0.33
026		1.44 ± 0.36	1.23 ± 0.16	94.8 ± 6.3	27.5 ± 2.3	24.6 ± 2.7	83.1 ± 4.5	0.22 ± 0.13	0.62 ± 0.25
027	1.61 ± 0.47	2.14 ± 0.73		470 ± 26	17.8 ± 3.0	52.6 ± 8.1	107 ± 6.2	0.34 ± 0.12	0.89 ± 0.17
028	0.68 ± 0.27	1.48 ± 0.36	1.24 ± 0.17	578 ± 34	41.3 ± 3.7		70.3 ± 4.5	0.25 ± 0.06	0.45 ± 0.14
029	0.95 ± 0.33	1.57 ± 0.33	1.73 ± 0.26	617 ± 41	28.4 ± 4.1		61.9 ± 3.8	0.18 ± 0.05	0.58 ± 0.24
030	0.45 ± 0.14	2.08 ± 0.51	3.61 ± 0.55	125 ± 12	16.3 ± 1.14	24.2 ± 2.5	21.3 ± 1.6	0.33 ± 0.12	0.75 ± 0.18
031 032		1.63 ± 0.35	1.76 ± 0.38	265 ± 42	294 ± 24	88.3 ± 4.5	185 ± 10	0.27 ± 0.09	1.64 ± 0.36
032	0.75 ± 0.36	$\begin{array}{c} 1.24 \pm 0.35 \\ 1.28 \pm 0.30 \end{array}$	1.67 ± 0.32	$367 \pm 38 \\ 341 \pm 47$	28.4 ± 3.4 31.5 ± 2.5	25.2 ± 1.7 25.3 ± 2.5	43.6 ± 2.7 50.4 ± 2.5	$\begin{array}{c} 0.27 \pm 0.08 \\ 0.52 \pm 0.18 \end{array}$	$\begin{array}{c} 0.85 \pm 0.23 \\ 0.85 \pm 0.17 \end{array}$
033	0.75 ± 0.30 0.67 ± 0.17	1.28 ± 0.30 1.85 ± 0.42	2.15 ± 0.76	414 ± 36	31.3 ± 2.3 37.2 ± 1.9	23.3 ± 2.3 28.2 ± 1.8	30.4 ± 2.3 44.3 ± 1.7	0.32 ± 0.18 0.48 ± 0.14	0.62 ± 0.23
035	1.14 ± 0.38	1.00 ± 0.42	1.29 ± 0.32	414 ± 50	45.1 ± 5.8	34.5 ± 1.8	75.4 ± 4.2	0.40 ± 0.14 0.41 ± 0.27	1.20 ± 0.36
036		0.71 ± 0.26	1.32 ± 0.21	194.6 ± 19.3	26.8 ± 1.5	16.8 ± 1.3	31.3 ± 2.6	0.31 ± 0.12	0.55 ± 0.20
037		1.33 ± 0.28	1.23 ± 0.16	463 ± 44	59.5 ± 6.8	33.2 ± 2.5	84.5 ± 3.6	0.35 ± 0.05	1.83 ± 0.52
038	0.60 ± 0.25	0.69 ± 0.14	1.05 ± 0.32	237 ± 28.5	17.4 ± 2.3	19.5 ± 2.4	40.4 ± 3.2	0.16 ± 0.05	
039	0.20 ± 0.05	1.11 ± 0.28	1.87 ± 0.60	241 ± 34.5	41.3 ± 8.2	140 ± 3.4	203 ± 24	0.33 ± 0.15	0.87 ± 0.32
040		0.85 ± 0.17	1.51 ± 0.25	215 ± 14	32.4 ± 2.8	84.3 ± 2.7	150 ± 14	0.28 ± 0.12	0.92 ± 0.25
041		0.86 ± 0.12	0.94 ± 0.24	217.5 ± 38.7	34.1 ± 2.7	24.1 ± 1.8	51.2 ± 1.4	0.27 ± 0.14	1.47 ± 0.32
042		1.47 ± 0.28	1.82 ± 0.27	175 ± 16.2	38.5 ± 6.2	71.4 ± 2.3	67.3 ± 5.4		1.72 ± 0.45
043		0.74 ± 0.14	1.36 ± 0.17	146.7 ± 14.5	25.2 ± 4.1	40.3 ± 4.5	52.5 ± 6.2	0.25 ± 0.14	1.02 ± 0.28
044 045	0.51 + 0.20	1.25 ± 0.32	1.43 ± 0.15	435 ± 26	12.5 ± 1.3	67.5 ± 6.0	60.1 ± 5.7	0.22 ± 0.11	1.35 ± 0.28
043 046	$0.51 \pm 0.20 \\ 0.44 \pm 0.18$	0.80 ± 0.24 1.20 ± 0.35	1.14 ± 0.27 1.53 ± 0.31	160.5 ± 16.8 144 ± 26.5	12.3 ± 1.3 16.4 ± 2.4	21.3 ± 1.4 18.5 ± 1.2	40.7 ± 3.5 36.4 ± 1.7	$0.32 \pm 0.11 \\ 0.47 \pm 0.14$	$\begin{array}{c} 1.07 \pm 0.27 \\ 1.32 \pm 0.18 \end{array}$
040	0.44 ± 0.13 0.75 ± 0.14	0.94 ± 0.15	1.33 ± 0.31 1.18 ± 0.24	58.2 ± 4.3	10.4 ± 2.4 15.0 ± 0.74	13.5 ± 1.2 14.2 ± 2.75	30.4 ± 1.7 29.5 ± 2.4	0.47 ± 0.14 0.29 ± 0.17	1.32 ± 0.13 1.24 ± 0.35
048	0.75 ± 0.14	0.75 ± 0.08	1.10 ± 0.24 1.28 ± 0.14	240 ± 27	47.9 ± 7.0	14.2 ± 2.75 25.1 ± 2.3	51.2 ± 3.4	0.29 ± 0.17 0.36 ± 0.17	0.70 ± 0.22
049		1.24 ± 0.10	1.38 ± 0.42	87.6 ± 9.5	10.3 ± 1.2	17.0 ± 1.7	62.4 ± 3.6	0.45 ± 0.24	0.70 ± 0.22 0.72 ± 0.26
050	0.78 ± 0.26		0.98 ± 0.16	1025 ± 63	58.1 ± 3.4	152 ± 12	252 ± 4.3	0.44 ± 0.25	1.25 ± 0.36
051	0.24 ± 0.05	0.74 ± 0.09		341 ± 67	30.3 ± 4.2	24.8 ± 3.8	107 ± 6.5	0.41 ± 0.25	1.05 ± 0.52
052	0.33 ± 0.08	1.35 ± 0.24		418 ± 49	26.5 ± 2.5	31.5 ± 2.6	44.4 ± 3.8	0.36 ± 0.32	0.72 ± 0.63
053	0.48 ± 0.21	1.63 ± 0.40	1.25 ± 0.36	570 ± 78	37.8 ± 3.4	49.3 ± 2.2	36.3 ± 4.5	0.24 ± 0.13	0.85 ± 0.26
054	0.53 ± 0.19	0.95 ± 0.18	1.35 ± 0.27		132 ± 11	67.4 ± 5.4	51.4 ± 6.8	0.16 ± 0.07	0.72 ± 0.17
055	0.64 ± 0.15	1.35 ± 0.44		875 ± 120	105 ± 17	58.2 ± 3.1	87.3 ± 5.4	0.18 ± 0.05	0.65 ± 0.24
056	0.84 ± 0.35	1.47 ± 0.25	1.00 + 0.00	971 ± 88	128 ± 9	47.5 ± 2.5	67.4 ± 4.7	0.19 ± 0.11	0.82 ± 0.19
057	0.02 + 0.29	1.68 ± 0.57	1.23 ± 0.38	1190 ± 172	145 ± 18	67.3 ± 3.4	145 ± 8.8	0.24 ± 0.12	0.61 ± 0.24
058	0.93 ± 0.28 0.74 ± 0.26	1.29 ± 0.30 1.23 ± 0.25	2.50 ± 0.36 2.70 ± 0.57	88.3 ± 7.5	21.4 ± 1.7 28.1 ± 4.2	26.3 ± 2.5 20.0 ± 1.6	75.4 ± 5.5	0.41 ± 0.15 0.25 ± 0.14	1.82 ± 0.14 0.72 ± 0.15
059 060	0.74 ± 0.26	$\begin{array}{c} 1.23 \pm 0.25 \\ 1.35 \pm 0.41 \end{array}$	2.70 ± 0.57 1.63 ± 0.50	$161 \pm 21 \\ 147 \pm 18$	$\begin{array}{c} 28.1 \pm 4.2 \\ 34.5 \pm 3.7 \end{array}$	29.0 ± 1.6 36.4 ± 2.8	40.1 ± 3.8 32.1 ± 2.4	$\begin{array}{c} 0.25 \pm 0.14 \\ 0.20 \pm 0.07 \end{array}$	$0.72 \pm 0.15 \\ 0.67 \pm 0.25$
060	1.98 ± 0.30	1.33 ± 0.41 2.86 ± 0.48	1.03 ± 0.30	147 ± 18 163.1 ± 17.8	34.3 ± 5.7 38.1 ± 6.2	30.4 ± 2.8 27.5 ± 1.7	32.1 ± 2.4 45.2 ± 3.7	0.20 ± 0.07 0.17 ± 0.06	0.07 ± 0.23 1.26 ± 0.33
001	1.70 ± 0.50	2.00 ± 0.40		103.1 ± 17.0	50.1 ± 0.2	41.J ± 1.1	1 <i>J</i> .2 ⊥ <i>J</i> .1	0.17 ± 0.00	1.20 ± 0.33

Table 2—(continued)

Sample	Hg	Pb	Cd	Fe	Cu	Mn	Zn	Со	As
no									
062	1.83 ± 0.25	3.41 ± 1.20	2.75 ± 0.18	186 ± 20.5	47.4 ± 2.3	16.4 ± 2.1	54.7 ± 4.5	0.12 ± 0.08	1.57 ± 0.45
063	0.75 ± 0.31	0.82 ± 0.23	0.83 ± 0.25	49 ± 7	77.2 ± 5.7	12.3 ± 1.4	17.0 ± 1.5	0.35 ± 0.17	0.94 ± 0.27
064	0.41 ± 0.16		1.62 ± 0.45	67.5 ± 10.3	82.1 ± 6.5	19.1 ± 1.9	28.5 ± 3.2	0.39 ± 0.21	0.85 ± 0.19
065	1.93 ± 0.62	2.21 ± 0.75	3.60 ± 0.45	360 ± 86	83.0 ± 4.8	40.2 ± 5.7	52.7 ± 7.2	0.36 ± 0.17	0.44 ± 0.12
066	1.60 ± 0.47	1.83 ± 0.63	2.14 ± 0.20	271 ± 47	61.3 ± 4.4	28.4 ± 1.6	161 ± 11.7	0.28 ± 0.12	0.58 ± 0.17
067		0.63 ± 0.19	1.16 ± 0.26	270 ± 39	61.5 ± 1.8	44.1 ± 5.7	77.4 ± 5.3	0.27 ± 0.09	1.75 ± 0.36
068		0.92 ± 0.22	1.22 ± 0.28	195 ± 23	74.3 ± 2.7	37.7 ± 6.3	62.5 ± 4.8	0.32 ± 0.14	1.62 ± 0.43
069		0.82 ± 0.24	1.28 ± 0.15	113 ± 14		16.7 ± 2.3	46.4 ± 5.4	0.17 ± 0.07	0.75 ± 0.14
070		1.24 ± 0.36	1.58 ± 0.45		26.1 ± 3.6	18.1 ± 2.3	42.7 ± 3.9	0.27 ± 0.12	1.15 ± 0.36
071		0.71 ± 0.25	1.35 ± 0.28		34.5 ± 5.5	23.2 ± 1.7	36.5 ± 4.3	0.21 ± 0.14	1.43 ± 0.45
072	0.44 ± 0.18	1.26 ± 0.35	2.63 ± 0.54	170 ± 16.7	26.3 ± 1.5		79.2 ± 4.7	0.27 ± 0.08	
073	0.35 ± 0.018	0.17 ± 0.06	0.67 ± 0.25	57.5 ± 10.2	7.16 ± 1.28	12.5 ± 1.4	43.1 ± 2.5	0.20 ± 0.07	
074	0.064 ± 0.02	0.67 ± 0.12	1.43 ± 0.36	264 ± 36	71.4 ± 6.3	12.3 ± 1.7	32.0 ± 2.6	0.32 ± 0.15	1.24 ± 0.28
075	0.085 ± 0.02	0.58 ± 0.17	1.67 ± 0.42	197 ± 21	62.8 ± 7.2	8.5 ± 2.2	22.5 ± 1.8	0.28 ± 0.11	1.37 ± 0.17
076	1.21 ± 0.34	0.87 ± 0.23	1.80 ± 0.61	203 ± 29	51.4 ± 6.7	19.1 ± 1.6	24.5 ± 3.2	0.22 ± 0.05	1.07 ± 0.20
077		0.75 ± 0.19	2.14 ± 0.78		43.7 ± 7.0	24.2 ± 2.5	45.7 ± 4.5	0.17 ± 0.03	0.87 ± 0.25
078	0.068 ± 0.01	4.10 ± 1.45	3.24 ± 0.71	97.8 ± 6.4	10.9 ± 1.4	10.1 ± 2.3	44.5 ± 3.5	0.18 ± 0.06	1.25 ± 0.32
079	0.42 ± 0.08	5.64 ± 1.20	2.25 ± 0.21	67 ± 5	18.2 ± 1.45	17.3 ± 1.4	20.1 ± 1.7	0.16 ± 0.05	1.43 ± 0.28
080	0.06 ± 0.008	2.15 ± 0.50	2.67 ± 0.42	217 ± 36		47.5 ± 3.5	35.3 ± 4.6	0.24 ± 0.09	0.85 ± 0.26
081	0.14 ± 0.07	1.75 ± 0.37	1.65 ± 0.29	254 ± 41		38.4 ± 2.4	48.6 ± 3.7	0.30 ± 0.12	0.95 ± 0.22
082	1.60 ± 0.41	1.55 ± 0.34	1.23 ± 0.12	240 ± 71	85.4 ± 4.1	26.4 ± 1.7	75.9 ± 7.7	0.17 ± 0.05	0.43 ± 0.15
083	0.78 ± 0.025	1.28 ± 0.41	1.51 ± 0.17	296 ± 67	73.2 ± 5.4	24.5 ± 2.5	145 ± 3.4	0.21 ± 0.09	0.68 ± 0.24
084	0.36 ± 0.14	1.34 ± 0.28	1.65 ± 0.32	380 ± 29	97.5 ± 6.2	32.3 ± 1.7	169.4 ± 6.7	0.24 ± 0.11	0.72 ± 0.36
085		0.92 ± 0.14	0.87 ± 0.12	167 ± 18	105 ± 5.7	27.5 ± 2.4	120 ± 5.5	0.18 ± 0.07	1.12 ± 0.45
086	0.18 ± 0.05	0.87 ± 0.23	1.42 ± 0.26	246 ± 30	126 ± 4.3	31.1 ± 4.2	101 ± 6.4	0.22 ± 0.10	0.94 ± 0.36
087		0.82 ± 0.20	1.26 ± 0.34	144 ± 17	41.5 ± 2.7	31.3 ± 2.4		0.32 ± 0.13	0.88 ± 0.25
088	0.03 ± 0.009	0.28 ± 0.04	0.74 ± 0.21	31.3 ± 4.7	13.5 ± 2.3	3.61 ± 0.62	22.5 ± 1.7	0.09 ± 0.04	
089	0.65 ± 0.08	1.58 ± 0.34	1.63 ± 0.36	550 ± 54	111 ± 6.4	100 ± 6.4	138 ± 6.7	0.12 ± 0.10	0.88 ± 0.24
090	0.42 ± 0.04	1.38 ± 0.41	1.26 ± 0.32	420 ± 92	83.5 ± 3.7	53.6 ± 2.7	83.4 ± 4.8	0.17 ± 0.08	0.75 ± 0.32
091	0.74 ± 0.20	1.87 ± 0.60	2.37 ± 0.48	385 ± 78	99.4 ± 6.7	46.1 ± 3.2	75.4 ± 2.9	0.11 ± 0.05	0.69 ± 0.18
092		1.54 ± 42	2.23 ± 0.44	105 ± 21	34.7 ± 3.8	28.4 ± 1.6		0.27 ± 0.12	1.26 ± 0.35
093	0.32 ± 0.05	0.74 ± 0.10	0.97 ± 0.24		21.3 ± 1.8	25.3 ± 1.9		0.27 ± 0.15	0.93 ± 0.17
094		0.27 ± 0.05	1.17 ± 0.16	851 ± 82	70.4 ± 5.2	104 ± 10.3	176 ± 8.2	0.45 ± 0.23	1.27 ± 0.33
095	0.35 ± 0.14	2.24 ± 0.65	2.20 ± 0.25	603 ± 41	102 ± 5.8	67.6 ± 5.8	75.1 ± 4.3	0.54 ± 0.15	1.78 ± 0.26
096	0.80 ± 0.31	1.34 ± 0.42	1.27 ± 0.18	142 ± 6.7	46.3 ± 7.7	16.2 ± 1.24	88.3 ± 1.6	0.62 ± 0.24	2.15 ± 0.35
097	0.63 ± 0.10	1.70 ± 0.46	2.17 ± 0.32	241 ± 27	58.4 ± 6.9	39.5 ± 3.4	196 ± 8.9	0.47 ± 0.15	2.36 ± 0.67
098	0.76 ± 0.11	1.94 ± 0.72	1.63 ± 0.21	671 ± 58.6	86.2 ± 5.5	127 ± 10.5	125 ± 6.6	0.38 ± 0.21	2.05 ± 0.53
099	0.10 ± 0.02	1.80 ± 0.44	1.94 ± 0.78	209 ± 36.2	36.5 ± 1.7	24.4 ± 4.6	62.7 ± 3.5	0.25 ± 0.09	1.23 ± 0.42
100	0.15 ± 0.05	1.26 ± 0.30	1.44 ± 0.32	319.5 ± 26.8	41.9 ± 2.5	31.3 ± 3.5	54.2 ± 2.6	0.32 ± 0.07	0.95 ± 0.24
101	0.18 ± 0.06	1.60 ± 0.54	1.76 ± 0.51	695.2 ± 118	54.3 ± 8.1	71.4 ± 3.7	87.0 ± 5.3	0.28 ± 0.15	0.75 ± 0.17
102	0.43 ± 0.04	3.08 ± 0.64	0.75 ± 0.24	141 ± 26	21.4 ± 2.5	8.14 ± 1.42	29.5 ± 3.1	0.35 ± 0.17	0.86 ± 0.25
103	0.21 ± 0.08	0.70 ± 0.25	1.14 ± 0.26	125 ± 17.4	42.5 ± 7.3	7.14 ± 1.17	67.8 ± 6.2	0.18 ± 0.08	1.26 ± 0.53
104	0.081 ± 0.01	0.98 ± 0.32	0.82 ± 0.17	103 ± 12.8	36.7 ± 7.1	8.20 ± 1.04	46.3 ± 6.8	0.29 ± 0.13	1.45 ± 0.38
105	0.098 ± 0.01	1.45 ± 0.34	1.20 ± 0.26	62.8 ± 5.1	21.3 ± 2.8	5.45 ± 0.94	23.4 ± 1.3	0.36 ± 0.15	1.27 ± 0.44
106	0.448 ± 0.06	2.88 ± 0.65	1.31 ± 0.42	85.7 ± 9.5	27.4 ± 5.2	6.40 ± 1.05	33.2 ± 2.6	0.41 ± 0.12	1.45 ± 0.37
107	0.15 ± 0.04	2.18 ± 0.84	3.26 ± 0.75	57.2 ± 6.7	19.8 ± 3.4	13.8 ± 2.4	27.4 ± 3.7	0.21 ± 0.09	1.12 ± 0.27
108	0.062 ± 0.01	3.60 ± 1.15	2.28 ± 0.46	61.4 ± 8.6	16.1 ± 2.9	14.2 ± 3.5	22.3 ± 1.5	0.15 ± 0.10	1.24 ± 0.36
109	0.05 ± 0.009	2.40 ± 0.55	1.63 ± 0.34	168 ± 24.6	35.4 ± 6.1	24.4 ± 3.2	47.8 ± 4.3	0.28 ± 0.12	0.89 ± 0.28
110	0.084 ± 0.01	2.04 ± 1.25	2.17 ± 0.68	128 ± 12.3	32.3 ± 4.5	17.3 ± 2.8	39.7 ± 1.6	0.32 ± 0.08	0.44 ± 0.21
111	0.053 ± 0.01	3.86 ± 1.38	1.28 ± 0.32	75.1 ± 4.9	18.7 ± 2.3	7.12 ± 1.50	30.5 ± 2.8	0.24 ± 0.11	0.63 ± 0.14

The amounts of trace element contents are related to species of mushroom, collecting site of the sample, age of fruiting bodies and mycelium, and distance from the source of pollution (Kalač, Burda, & Staskova, 1991).

The heavy metal concentrations in the mushroom are hardly affected by pH and organic matter content of the soil (Gast, Jansen, Bierling, & Haanstra, 1988).

The trace element contents of the species depend on the ability of the species to extract elements from the substrate, and on the selective uptake and deposition of elements in tissues. An interesting aspect of our study is that different samples of the same species differ considerably in their trace element contents. According to our studies, no difference between saprophytic and mycorrhizal-forming species was observed.

We identified 109 species of macrofungi belonging to 37 families. Some species live saprophytically on various dead

		-							
Calculated values	Hg	Pb	Cd	Fe	Cu	Mn	Zn	Co	As
Average, x (µg/g)	0.74	1.87	2.37	385	99.4	46.1	75.5	0.11	0.69
Standard deviation, (S)	0.20	0.60	0.48	78	6.7	3.2	2.9	0.05	0.18
Relative (S)	27.0	32.1	20.3	20.3	6.7	6.9	3.8	45.5	26.1
Confidence interval	0.74 ± 0.25	1.87 ± 0.74	2.37 ± 0.60	385 ± 97	99.4 ± 8.3	46.1 ± 3.9	75.5 ± 3.6	0.11 ± 0.06	0.69 ± 0.22

 Table 3

 Statistical analysis results for Agaricus sp. mushroom

For all experiments: t = 2.776 for n = 5.

materials, some are parasitic and some are considered to form ectomycorrhizae with trees.

Trace element concentrations in the species analysed (Table 2) are not different from values reported within Europe (Seeger, Meyer, & Schönhut, 1976; Seeger, 1978; Tyler, 1980).

The trace element concentrations were highest in macrofungi of the family *Tricholomataceae*.

The heavy metal contents of 111 macrofungi species are shown in Table 2. From the table, in the macrofungi supplied from the East Black Sea Region, the highest Hg level was found as 1.98 μ g/g for the species of *Lepista inversa*, whereas the lowest Hg level was 0.03 μ g/g in *Agaricus bisporus*. The highest Pb level was 5.64 μ g/g for the species *Hypholoma fasciculare*, which was collected near the vicinity of the road. The lowest Pb levels were 0.17 μ g/g in the species of *Pleurotus ostreatus* and 0.27 μ g/g in *Macrolepiota gracilenta*. The highest Cd level was determined as 3.61 μ g/g for *Hydnum repandum*. Among the wild macrofungi, the lowest Cd level was 0.75 μ g/g for the species of *Lactarius piperatus*, which is used as food in the region.

According to previous studies, it appears that certain taxonomical groups have a significantly higher cadmium content than other (Vetter, 1994). In our study, the species living on dead organic debris on earth accumulate cadmium more than the other species of macrofungi.

The highest Fe and Cu levels were 1190 and 145 μ g/g, respectively, for the species *Hygrophorus unicolor*. The lowest Fe levels were 31.3 μ g/g for a culture species of *Agaricus bisporus* and 49 μ g/g for an edible species of *Tricholoma terreum* collected from woods. The lowest Cu levels were 7.16 μ g/g for *Pleurotus ostreatus* and 10.3 μ g/g for *Suillus granulatus*. The highest Mn level (152 μ g/g) and the highest Zn level (252.3 μ g/g) were determined for the species *Paxillus atrotomentosus*. The highest levels of Co (0.62 μ g/g) and As (2.15 μ g/g) were determined for the species of *Amanita rubescens*. The

lowest Mn and Co levels were 3.61 μ g/g and 0.09 μ g/g for the species *Agaricus bisporus*. The lowest Zn level was 17.0 μ g/g for the species of *Tricholoma terreum*. The lowest As level was 0.43 μ g/g for the species *Cortinarius auroturbinatus*. A statistical analysis was carried out for *Agaricus* sp. mushroom (Table 3).

References

- Breitenbach, J., & Kränzlin, F. (1984). *Fungi of Switzerland* (vol. 1). Lucerne: Verlag Mykologia.
- Breitenbach, J., & Kränzlin, F. (1986). Fungi of Switzerland (vol. 2). Lucerne: Verlag Mykologia.
- Breitenbach, J., & Kränzlin, F. (1991). *Fungi of Switzerland* (vol. 3). Lucerne: Verlag Mykologia.
- Gast, C.H., Jansen, E., Bierling, J., & Haanstra, L. (1988). Chemosphere, 17 (4), 789–799.
- Hatch, W. R., & Ott, W. L. (1968). Anal. Chem., 40, 2085-2087.
- Kalac, P., Burda, J., & Staskova, I. (1991). The Science of the Total Environment, 105, 109–119.
- Kojo, M. R., & Lodenius, M. (1989). Angew Botanik, 63, 279-292.
- Latiff, L. A., Daran, A. B. M., & Mohamed, A. B. (1996). Food Chemistry, 56, 115–121.
- Lepsova, A., & Mejstrik, V. (1988). The Science of the Total Environment, 76, 117–128.
- Lilja, H. L., Kuusi, T., Laaksovirta, K., Lodenius, M., & Piepponen, S. (1983). Z. Lebensm.-Unters. Forsch. 176 (2), 120–123.
- Lincoff, H. G. L. (1988). The audubon society field guide to North American mushrooms. Chanticleer Press, New York.
- Mandic, M. L., Grgic, J., Grgic, Z., & Seruga, M. (1992). Dtsch. Lebensm.-Rundsch, 88 (3), 76–77.
- Piepponen, S., Lilja, H. L., & Kuusi, T. (1983). Z. Lebensm.-Unters. Forsch., 177 (4), 257–260.
- Seeger, R., Meyer, E., & Schönhut, S. (1976). Z. Lebensm.-Unters. Forsch., 162, 7–10.
- Seeger, R. (1978). Z. Lebensm.-Unters. Forsch., 166, 23-34.
- Sesli, E., & Baydar, S. (1996). Mycotaxon, 60, 213-224.
- Sesli, E. (1997). Israel Journal of Plant Sciences, 45, 71-74.
- Sesli, E. (1998). Tr. J. of Botany, 22, 43-50.
- Stijve, T., & Bourqui, B. (1991). Dtsh. Lebensm.-Rundsch, 87 (10), 307-310.
- Tyler, G. (1980). Trans. Brit. Mycol. Soc., 74, 41-49.
- Vetter, J. (1994). Toxicon, 32 (1), 11-15.
- Zachara, B. A., Borowska, K., Koper, J., & Wasowicz, W. (1986). Acta Pharmacol. Toxicol., 59 (7), 627–629.